Found 204 chord chart(s) for 653x00 in Alternate Tuning (D, A, D, G, B, D).
ChartInversionPositionAvg PitchOpennessDifficulty
653x00no
020103yes
023100yes
320100yes
020133yes
023103yes
023130yes
320103yes
320130yes
323100yes
x20103yes
x23100yes
02310xyes
32010xyes
xx0103yes
xx3100yes
x20133yes
x23130yes
02313xyes
32013xyes
0231xxyes
3201xxyes
050466yes
053406yes
056403yes
056460yes
350406yes
356400yes
650403no
650460no
653400no
x2313xyes
080706yes
086700yes
680700no
053436yes
056433yes
353406yes
353436yes
356430yes
356433yes
650433no
653430no
653433no
x50466yes
x53406yes
x56403yes
x56460yes
05646xyes
35640xyes
65046xno
65340xno
086706yes
680706no
686700no
x80706yes
x86700yes
08670xyes
68070xno
xx0466yes
xx6460no
080799yes
086709yes
089706yes
089790yes
0(11)0(10)00yes
680709no
689700no
980706yes
980790yes
986700yes
x53436yes
x56433yes
35643xyes
65343xno
x5646xyes
3564xxyes
6534xxno
x86706yes
68670xno
0(11)0(10)09yes
0(11)9(10)00yes
9(11)0(10)00yes
xx3436yes
xx6433no
080(10)99yes
089(10)90yes
980(10)90yes
x8670xyes
086769yes
089766yes
686709no
686769no
689760no
689766no
980766yes
986760yes
986766yes
x(11)0(10)00no
0(11)0(10)0xyes
x80799yes
x86709yes
x89706yes
x89790yes
08979xyes
68970xno
98079xyes
98670xyes
0(11)0(10)0(12)yes
0(11)0(10)(12)0yes
0(11)(12)(10)00yes
(12)(11)0(10)00yes
0(11)0(10)99yes
0(11)9(10)09yes
0(11)9(10)90yes
9(11)0(10)09yes
9(11)0(10)90yes
9(11)9(10)00yes
0(11)9(10)99yes
9(11)9(10)90yes
x(11)0(10)09no
x(11)9(10)00no
0(11)9(10)0xyes
9(11)0(10)0xyes
x80(10)99yes
x89(10)90yes
089(10)9xyes
980(10)9xyes
089(10)99yes
0(11)0(10)(12)9yes
0(11)0(10)(12)(12)yes
0(11)9(10)0(12)yes
0(11)9(10)(12)0yes
0(11)(12)(10)09yes
0(11)(12)(10)0(12)yes
0(11)(12)(10)(12)0yes
9(11)0(10)0(12)yes
9(11)0(10)(12)0yes
9(11)(12)(10)00yes
(12)(11)0(10)09yes
(12)(11)0(10)0(12)yes
(12)(11)0(10)(12)0yes
(12)(11)9(10)00yes
(12)(11)(12)(10)00yes
x86769yes
x89766yes
68976xno
98676xyes
xx0(10)99yes
xx9(10)90yes
x8979xyes
6897xxno
9867xxyes
x(11)0(10)0xno
x(11)0(10)0(12)no
x(11)0(10)(12)0no
x(11)(12)(10)00no
0(11)0(10)(12)xyes
0(11)(12)(10)0xyes
(12)(11)0(10)0xyes
x(11)0(10)99no
x(11)9(10)90no
0(11)9(10)9xyes
9(11)0(10)9xyes
xx6769no
xx9766yes
0(11)9(10)xxyes
9(11)0(10)xxyes
0(11)9(10)9(12)yes
0(11)9(10)(12)9yes
0(11)(12)(10)99yes
9(11)9(10)0(12)yes
9(11)9(10)9(12)yes
9(11)9(10)(12)0yes
9(11)(12)(10)90yes
9(11)(12)(10)99yes
(12)(11)0(10)99yes
(12)(11)9(10)90yes
(12)(11)9(10)99yes
x(11)0(10)(12)9no
x(11)0(10)(12)(12)no
x(11)9(10)0(12)no
x(11)9(10)(12)0no
x(11)(12)(10)09no
x(11)(12)(10)0(12)no
x(11)(12)(10)(12)0no
0(11)9(10)(12)xyes
0(11)(12)(10)(12)xyes
9(11)0(10)(12)xyes
9(11)(12)(10)0xyes
(12)(11)0(10)(12)xyes
(12)(11)9(10)0xyes
(12)(11)(12)(10)0xyes
x(11)0(10)(12)xno
x(11)(12)(10)0xno
x(11)9(10)9(12)no
x(11)(12)(10)99no
9(11)(12)(10)9xyes
(12)(11)9(10)9xyes
x(11)(12)(10)(12)xno
9(11)(12)(10)xxyes
(12)(11)9(10)xxyes
xx9(10)9(12)yes
xx(12)(10)99yes