Drop D (D, A, D, G, B, E)
Standard (E, A, D, G, B, E)
Drop D (D, A, D, G, B, E)
Double Drop D (D, A, D, G, B, D)
"DADGAD" (D, A, D, G, A, D)
Open D (D, A, D, F#, A, D)
Open E (E, B, E, G#, B, E)
Everything
Chord Charts
Chords
Chart Progressions
Scales
Search
Search options
Allow Open
Strict Bass Notes
All Mutes
Span
2 Frets
3 Frets
4 Frets
5 Frets
Frets
Frets 0 through 12
Frets 0 through 6
Frets 6 through 12
Frets 12 through 18
Strings
Exactly 3 strings
Exactly 4 strings
Exactly 5 strings
Exactly 6 strings
At least 4 strings
At least 5 strings
Found
181
chord chart(s) for 020223 in Alternate Tuning (D, A, D, G, B, E).
Chart
Inversion
Position
Avg Pitch
Openness
Difficulty
020223
no
000423
no
040203
no
040005
no
045005
no
540005
yes
000603
no
x00423
yes
x40203
yes
x20223
yes
x40005
yes
005605
no
500605
yes
005423
no
045203
no
045405
no
500423
yes
540203
yes
540405
yes
005603
no
500603
yes
025223
no
00560x
no
50060x
yes
005607
no
500607
yes
00542x
no
04520x
no
50042x
yes
54020x
yes
045605
no
055605
no
540605
yes
550605
yes
x00603
yes
047005
no
740005
yes
000009
no
02522x
no
000687
no
009009
no
900009
yes
04700x
no
74000x
yes
007009
no
700009
yes
x55605
no
009089
no
900089
yes
x00009
yes
005687
no
007687
no
500687
yes
700687
yes
557607
yes
755607
yes
x00687
yes
55760x
yes
75560x
yes
0090(10)9
no
9000(10)9
yes
009687
no
009789
no
00(11)00(10)
no
900687
yes
900789
yes
(11)0000(10)
yes
00(11)009
no
(11)00009
yes
0(10)7009
no
7(10)0009
yes
90(11)00(10)
yes
(11)0900(10)
yes
(11)0(11)00(10)
yes
00(11)00x
no
(11)0000x
yes
00968x
no
90068x
yes
0(10)90(10)9
no
9(10)00(10)9
yes
0000(12)9
no
000(12)09
no
00(12)009
no
0(12)0009
no
907789
yes
(12)00009
no
0(10)7709
no
7(10)7709
yes
709789
yes
x0(11)00(10)
yes
x09789
yes
00(11)0(12)(10)
no
00(11)(12)0(10)
no
0(12)(11)00(10)
no
(11)000(12)(10)
yes
(11)00(12)0(10)
yes
(11)0(12)00(10)
yes
(11)(12)000(10)
yes
(12)0(11)00(10)
no
90(11)08(10)
yes
90(11)0(10)(10)
yes
(11)0908(10)
yes
(11)090(10)(10)
yes
00(11)0(12)9
no
00(11)(12)09
no
0(12)(11)009
no
(11)000(12)9
yes
(11)00(12)09
yes
(11)0(12)009
yes
(11)(12)0009
yes
(12)0(11)009
no
00(11)0(12)x
no
00(11)(12)0x
no
0(12)(11)00x
no
(11)000(12)x
yes
(11)00(12)0x
yes
(11)0(12)00x
yes
(11)(12)000x
yes
(12)0(11)00x
no
00(11)(12)(12)(10)
no
0(12)(11)0(12)(10)
no
0(12)(11)(12)0(10)
no
90(11)0(12)(10)
yes
90(11)(12)0(10)
yes
9(12)(11)00(10)
yes
(11)00(12)(12)(10)
yes
(11)090(12)(10)
yes
(11)09(12)0(10)
yes
(11)0(11)0(12)(10)
yes
(11)0(11)(12)0(10)
yes
(11)0(12)0(12)(10)
yes
(11)0(12)(12)0(10)
yes
(11)(12)00(12)(10)
yes
(11)(12)0(12)0(10)
yes
(11)(12)900(10)
yes
(11)(12)(11)00(10)
yes
(11)(12)(12)00(10)
yes
(12)0(11)0(12)(10)
no
(12)0(11)(12)0(10)
no
(12)(12)(11)00(10)
no
9000(12)9
yes
900(12)09
yes
90(12)009
yes
x000(12)9
yes
x00(12)09
yes
x0(12)009
yes
x(12)0009
yes
x(10)7709
yes
009(12)(10)9
no
x0(11)0(12)(10)
yes
x0(11)(12)0(10)
yes
x(12)(11)00(10)
yes
00(11)(12)(12)x
no
0(12)(11)0(12)x
no
0(12)(11)(12)0x
no
(11)00(12)(12)x
yes
(11)0(12)0(12)x
yes
(11)0(12)(12)0x
yes
(11)(12)00(12)x
yes
(11)(12)0(12)0x
yes
(11)(12)(12)00x
yes
(12)0(11)0(12)x
no
(12)0(11)(12)0x
no
(12)(12)(11)00x
no
900(12)(10)9
yes
90(12)0(10)9
yes
(11)0(12)(12)(12)(10)
yes
(11)(12)(12)(12)0(10)
yes
(11)(12)(12)(12)(12)(10)
yes
x0(11)(12)(12)(10)
yes
x(12)(11)0(12)(10)
yes
x(12)(11)(12)0(10)
yes
0(12)(11)(12)(12)x
no
(11)0(12)(12)(12)x
yes
(11)(12)0(12)(12)x
yes
(11)(12)(12)0(12)x
yes
(11)(12)(12)(12)0x
yes
(12)0(11)(12)(12)x
no
(12)(12)(11)0(12)x
no
(12)(12)(11)(12)0x
no
(11)(12)(12)(12)(12)x
yes