"DADGAD" (D, A, D, G, A, D)
Standard (E, A, D, G, B, E)
Drop D (D, A, D, G, B, E)
Double Drop D (D, A, D, G, B, D)
"DADGAD" (D, A, D, G, A, D)
Open D (D, A, D, F#, A, D)
Open E (E, B, E, G#, B, E)
Everything
Chord Charts
Chords
Chart Progressions
Scales
Search
Search options
Allow Open
Strict Bass Notes
All Mutes
Span
2 Frets
3 Frets
4 Frets
5 Frets
Frets
Frets 0 through 12
Frets 0 through 6
Frets 6 through 12
Frets 12 through 18
Strings
Exactly 3 strings
Exactly 4 strings
Exactly 5 strings
Exactly 6 strings
At least 4 strings
At least 5 strings
Found
111
chord chart(s) for x46745 in Alternate Tuning (D, A, D, G, A, D).
Chart
Inversion
Position
Avg Pitch
Openness
Difficulty
x46745
no
x40056
no
x46050
no
x40046
no
x46040
no
x45056
no
x46055
no
x46056
no
x460x0
no
x4605x
no
x400x6
no
x4x056
no
(11)(10)00(11)0
no
(11)(11)00(10)0
no
(11)(11)00(11)0
no
x45746
no
(11)(10)00(11)(11)
no
(11)(10)(11)0(11)0
no
(11)(11)00(10)(11)
no
(11)(11)00(11)(11)
no
(11)(11)(11)0(10)0
no
(11)(11)(11)0(11)0
no
(11)(11)(11)(12)(11)0
no
(11)x00(11)0
no
(11)(10)00(11)x
no
(11)(11)00x0
no
(11)(11)00(10)x
no
(11)(11)00(11)x
no
x45x56
no
x46x55
no
(11)(10)00(11)(12)
no
(11)(10)0(12)(11)0
no
(11)(10)(12)0(11)0
no
(11)(11)00(10)(12)
no
(11)(11)00(11)(12)
no
(11)(11)0(12)(10)0
no
(11)(11)0(12)(11)0
no
(11)(11)(12)0(10)0
no
(11)(11)(12)0(11)0
no
(11)(11)(11)0x0
no
(11)(11)(11)(12)(11)(12)
no
(11)(11)(12)(12)(11)0
no
(11)(11)(12)(12)(11)(11)
no
xx(11)0(11)0
no
(11)(11)00xx
no
(11)x00(11)(11)
no
(11)x(11)0(11)0
no
(11)(10)x0(11)0
no
(11)(10)0x(11)0
no
(11)(11)x0(10)0
no
(11)(11)x0(11)0
no
(11)(11)0x(10)0
no
(11)(11)00x(11)
no
(11)x00(11)x
no
(11)(11)(12)(12)(11)(12)
no
(11)x00(11)(12)
no
(11)x0(12)(11)0
no
(11)x(12)0(11)0
no
(11)(10)0(12)(11)x
no
(11)(10)(12)0(11)x
no
(11)(11)00x(12)
no
(11)(11)0(12)x0
no
(11)(11)0(12)(10)x
no
(11)(11)0(12)(11)x
no
(11)(11)(12)0x0
no
(11)(11)(12)0(10)x
no
(11)(11)(12)0(11)x
no
(11)(11)(11)0(10)(12)
no
(11)(11)(11)(12)(10)0
no
(11)x(11)(12)(11)0
no
(11)(11)x(12)(11)0
no
(11)(11)(11)0x(12)
no
(11)(11)(11)(12)x0
no
(11)(11)(12)(12)(11)x
no
(11)(11)(11)x(10)0
no
xx(11)0(11)(12)
no
xx(11)(12)(11)0
no
(11)(11)0(12)xx
no
(11)(11)(12)0xx
no
(11)xx0(11)0
no
(11)(10)0x(11)x
no
(11)(11)x0x0
no
(11)(11)0x(10)x
no
(11)x(11)(12)(11)(12)
no
(11)x(12)(12)(11)0
no
(11)x(12)(12)(11)(11)
no
(11)(11)x(12)(11)(12)
no
(11)(11)0(12)x(12)
no
(11)(11)(11)(12)x(12)
no
(11)(11)(12)0x(12)
no
(11)(11)(12)(12)x0
no
(11)(11)(12)(12)x(11)
no
(11)(11)0(12)(11)(11)
no
(11)(11)(12)0(11)(11)
no
xx(11)(12)(11)(12)
no
(11)x0(12)(11)x
no
(11)x(12)0(11)x
no
(11)(11)(12)(12)xx
no
(11)(11)x0(10)(12)
no
(11)(11)x(12)(10)0
no
(11)(11)0x(10)(12)
no
(11)(11)(11)x(10)(12)
no
(11)(11)(12)x(10)0
no
(11)(11)(12)(12)x(12)
no
(11)xx(12)(11)0
no
(11)x(12)(12)(11)x
no
(11)(11)x0x(12)
no
(11)(11)x(12)x0
no
(11)(11)xx(10)0
no
(11)(11)(12)x(10)x
no
(11)(11)x(12)x(12)
no