"DADGAD" (D, A, D, G, A, D)
Standard (E, A, D, G, B, E)
Drop D (D, A, D, G, B, E)
Double Drop D (D, A, D, G, B, D)
Perfect 4ths (E, A, D, G, C, F)
"DADGAD" (D, A, D, G, A, D)
Open D (D, A, D, F#, A, D)
Open E (E, B, E, G#, B, E)
Everything
Chord Charts
Chords
Chart Progressions
Chart Collections
Scales
Search
Search options
Allow Open
Strict Bass Notes
All Mutes
Span
2 Frets
3 Frets
4 Frets
5 Frets
Frets
Frets 0 through 12
Frets 0 through 6
Frets 6 through 12
Frets 12 through 18
Strings
Exactly 3 strings
Exactly 4 strings
Exactly 5 strings
Exactly 6 strings
At least 4 strings
At least 5 strings
Found
111
chord chart(s) for x36055 in Alternate Tuning (D, A, D, G, A, D).
Chart
Inversion
Position
Avg Pitch
Openness
Difficulty
x36055
no
x30056
no
x36050
no
x360x0
no
x3605x
no
x35556
no
x36555
no
(10)(10)00(11)0
no
(10)(11)00(10)0
no
(10)(11)00(11)0
no
(10)(10)(10)0(11)0
no
(10)(10)00(11)(10)
no
(10)(11)00(10)(10)
no
(10)(11)00(11)(10)
no
(10)(11)(10)0(10)0
no
(10)(11)(10)0(11)0
no
(10)x00(11)0
no
(10)(10)00(11)x
no
(10)(11)00x0
no
(10)(11)00(10)x
no
(10)(11)00(11)x
no
x35x56
no
(10)(10)00(11)(12)
no
(10)(10)0(12)(11)0
no
(10)(10)(12)0(11)0
no
(10)(11)00(10)(12)
no
(10)(11)00(11)(12)
no
(10)(11)0(12)(10)0
no
(10)(11)0(12)(11)0
no
(10)(11)(12)0(10)0
no
(10)(11)(12)0(11)0
no
(10)(10)(10)0(11)(12)
no
(10)(10)(10)(12)(11)0
no
(10)(11)(10)(12)(10)0
no
xx(10)0(11)0
no
(10)(11)00xx
no
(10)x00(11)(10)
no
(10)x(10)0(11)0
no
(10)(10)x0(11)0
no
(10)(10)0x(11)0
no
(10)(11)x0(10)0
no
(10)(11)x0(11)0
no
(10)(11)0x(10)0
no
(10)(11)00x(10)
no
(10)(11)(10)0x0
no
(10)(10)(10)x(11)0
no
(10)(11)(10)x(10)0
no
(10)x00(11)x
no
(10)(10)0(12)(11)(12)
no
(10)(10)(10)(12)(11)(12)
no
(10)(10)(12)0(11)(12)
no
(10)(10)(12)(12)(11)0
no
(10)(10)(12)(12)(11)(10)
no
(10)(11)(10)0(11)(12)
no
(10)(11)(10)(12)(10)(12)
no
(10)(11)(10)(12)(11)0
no
(10)(11)(12)(12)(10)0
no
(10)(11)(12)(12)(10)(10)
no
(10)x00(11)(12)
no
(10)x0(12)(11)0
no
(10)x(12)0(11)0
no
(10)(10)0(12)(11)x
no
(10)(10)(12)0(11)x
no
(10)(11)00x(12)
no
(10)(11)0(12)x0
no
(10)(11)0(12)(10)x
no
(10)(11)0(12)(11)x
no
(10)(11)(12)0x0
no
(10)(11)(12)0(10)x
no
(10)(11)(12)0(11)x
no
xx(10)0(11)(12)
no
xx(10)(12)(11)0
no
(10)(11)0(12)xx
no
(10)(11)(12)0xx
no
(10)xx0(11)0
no
(10)(10)0x(11)x
no
(10)(11)x0x0
no
(10)(11)0x(10)x
no
(10)x(10)0(11)(12)
no
(10)x(10)(12)(11)0
no
(10)(10)x0(11)(12)
no
(10)(10)x(12)(11)0
no
(10)(10)0x(11)(12)
no
(10)(10)(10)x(11)(12)
no
(10)(10)(12)x(11)0
no
(10)(10)(12)x(11)(10)
no
(10)(10)(12)(12)(11)x
no
(10)(11)x(12)(10)0
no
(10)(11)(10)x(10)(12)
no
(10)(11)(10)0x(12)
no
(10)(11)(10)(12)x0
no
(10)(11)(12)x(10)0
no
(10)(11)(12)x(10)(10)
no
(10)(11)(12)(12)(10)x
no
xx(10)(12)(11)(12)
no
(10)x0(12)(11)x
no
(10)x(12)0(11)x
no
(10)(11)(12)(12)xx
no
(10)(10)xx(11)0
no
(10)(11)xx(10)0
no
(10)x(12)(12)(11)0
no
(10)(11)x(12)(11)0
no
(10)(11)0(12)x(12)
no
(10)(11)(12)(12)x0
no
(10)(11)(12)(12)x(12)
no
(10)(10)(12)x(11)x
no
(10)(11)(12)x(10)x
no
(10)x(12)(12)(11)(10)
no
(10)(11)(10)(12)x(12)
no
(10)(11)(12)(12)x(10)
no
(10)x(12)(12)(11)x
no