"DADGAD" (D, A, D, G, A, D)
Standard (E, A, D, G, B, E)
Drop D (D, A, D, G, B, E)
Double Drop D (D, A, D, G, B, D)
"DADGAD" (D, A, D, G, A, D)
Open D (D, A, D, F#, A, D)
Open E (E, B, E, G#, B, E)
Everything
Chord Charts
Chords
Chart Progressions
Chart Collections
Scales
Search
Search options
Allow Open
Strict Bass Notes
All Mutes
Span
2 Frets
3 Frets
4 Frets
5 Frets
Frets
Frets 0 through 12
Frets 0 through 6
Frets 6 through 12
Frets 12 through 18
Strings
Exactly 3 strings
Exactly 4 strings
Exactly 5 strings
Exactly 6 strings
At least 4 strings
At least 5 strings
Found
178
chord chart(s) for x(12)0x(12)(12) in Alternate Tuning (D, A, D, G, A, D).
Chart
Inversion
Position
Avg Pitch
Openness
Difficulty
x(12)0x(12)(12)
yes
050050
no
050055
no
055050
no
0x00x0
no
x50050
no
0x0050
no
0500x0
no
05005x
no
055055
no
x50055
no
x55050
no
0x0055
no
0x5050
no
05x050
no
0500x5
no
0550x0
no
05505x
no
xx0050
no
0500xx
no
055x50
no
055x55
no
xx0055
no
x500x0
no
x5005x
no
0x005x
no
0550xx
no
055750
no
055755
no
x55055
no
0x5055
no
05x055
no
050x55
no
0550x5
no
x5x050
no
x500x5
no
x550x0
no
x5505x
no
0xx050
no
0x00x5
no
0x50x0
no
0x505x
no
05x0x0
no
05x05x
no
x55x50
no
x55x55
no
055x5x
no
0(10)00(10)0
no
x55750
no
x55755
no
05575x
no
x5x055
no
x50x55
no
x550x5
no
0xx055
no
0x0x55
no
0x5x50
no
0x50x5
no
05x0x5
no
050xx5
no
055xx0
no
0x5x55
no
05xx55
no
055xx5
no
0507x5
no
0557x0
no
0557x5
no
0x5750
no
0x5755
no
05x755
no
0x0755
no
xx0755
no
0557xx
no
0x00(10)0
no
0(10)00x0
no
0(10)00(10)x
no
x5575x
no
x507x5
no
x557x0
no
0x57x0
no
0(10)x0(10)0
no
0(10)0x(10)0
no
xx00(10)0
no
0(10)00xx
no
x557x5
no
0(10)07x0
no
x5x755
no
0x575x
no
0(10)00(10)(12)
no
0(10)0(12)(10)0
no
0(10)(12)0(10)0
no
(12)(10)00(10)0
no
0x00(10)x
no
xx07(10)0
no
0(10)07xx
no
0x57x5
no
05x7x5
no
0xx0(10)0
no
0x0x(10)0
no
0(10)x0x0
no
0(10)x0(10)x
no
0(10)0xx0
no
0(10)0x(10)x
no
0(10)0(12)x0
no
0(10)(12)0x0
no
(12)(10)00x0
no
0(10)(12)(12)(10)0
no
0x00(10)(12)
no
0x0(12)(10)0
no
0x(12)0(10)0
no
0(10)00x(12)
no
0(10)0(12)(10)x
no
0(10)(12)0(10)x
no
(12)x00(10)0
no
(12)(10)00(10)x
no
0(10)xx(10)0
no
xx00(10)(12)
no
xx0(12)(10)0
no
xx(12)0(10)0
no
0(10)0(12)xx
no
0(10)(12)0xx
no
(12)(10)00xx
no
0(10)0(12)x(12)
no
0(10)(12)x(10)0
no
0(10)(12)0x(12)
no
0(10)(12)(12)x0
no
(12)(10)x0(10)0
no
(12)(10)0x(10)0
no
(12)(10)00x(12)
no
(12)(10)0(12)x0
no
(12)(10)(12)0x0
no
0(10)x(12)(10)0
no
0x00x(12)
no
0x0(12)x0
no
0x(12)0x0
no
(12)x00x0
no
0(10)(12)(12)(10)x
no
0x0(12)(10)x
no
0x(12)0(10)x
no
(12)x00(10)x
no
xx0(12)(10)(12)
no
xx(12)0(10)(12)
no
xx(12)(12)(10)0
no
0(10)(12)(12)xx
no
(12)(10)0(12)xx
no
(12)(10)(12)0xx
no
0(10)(12)x(10)(12)
no
(12)(10)x(12)(10)0
no
(12)(10)(12)x(10)0
no
0(10)(12)(12)x(12)
no
0x0(12)x(12)
no
0x(12)0x(12)
no
0x(12)(12)x0
no
0(10)x(12)x0
no
0(10)(12)xx0
no
0(10)(12)x(10)x
no
(12)x00x(12)
no
(12)x0(12)x0
no
(12)x(12)0x0
no
(12)(10)x0x0
no
(12)(10)x0(10)x
no
(12)(10)0xx0
no
(12)(10)0x(10)x
no
0x(12)(12)(10)0
no
(12)x(12)0(10)0
no
(12)x(12)(12)(10)0
no
0x(12)(12)x(12)
no
(12)x(12)(12)x0
no
(12)x(12)(12)x(12)
no
0(10)x(12)(10)x
no
(12)(10)xx(10)0
no
(12)(10)x(12)(10)x
no
(12)(10)(12)x(10)x
no
0x(12)(12)(10)x
no
(12)x(12)0(10)x
no
(12)x(12)(12)(10)x
no
0(10)x(12)x(12)
no
0(10)(12)xx(12)
no