Double Drop D (D, A, D, G, B, D)
Standard (E, A, D, G, B, E)
Drop D (D, A, D, G, B, E)
Double Drop D (D, A, D, G, B, D)
"DADGAD" (D, A, D, G, A, D)
Open D (D, A, D, F#, A, D)
Open E (E, B, E, G#, B, E)
Everything
Chord Charts
Chords
Chart Progressions
Scales
Search
Search options
Allow Open
Strict Bass Notes
All Mutes
Span
2 Frets
3 Frets
4 Frets
5 Frets
Frets
Frets 0 through 12
Frets 0 through 6
Frets 6 through 12
Frets 12 through 18
Strings
Exactly 3 strings
Exactly 4 strings
Exactly 5 strings
Exactly 6 strings
At least 4 strings
At least 5 strings
Found
177
chord chart(s) for 0(11)0(12)(12)x in Alternate Tuning (D, A, D, G, B, D).
Chart
Inversion
Position
Avg Pitch
Openness
Difficulty
0(11)0(12)(12)x
no
050006
no
056000
no
055006
no
056005
no
056006
no
x50006
no
x56000
no
0x0006
no
0x6000
no
05600x
no
055406
no
056405
no
x55006
no
x56005
no
x56006
no
0x5006
no
0x6005
no
0x6006
no
05x006
no
xx0006
no
055706
no
056705
no
x5600x
no
0x600x
no
x55406
no
x56405
no
0x5406
no
0x6405
no
055x06
no
056x05
no
x5x006
no
0xx006
no
0(11)0000
no
055436
no
x55706
no
x56705
no
0x5706
no
0x6705
no
0(10)0099
no
0(10)9090
no
0(11)0009
no
0(11)9000
no
x55x06
no
x56x05
no
0x5x06
no
0x6x05
no
0x0099
no
0x9090
no
0(11)000x
no
0(10)9099
no
0(11)000(12)
no
0(11)00(12)0
no
0(11)0(12)00
no
0(11)(12)000
no
(12)(11)0000
no
0(11)0089
no
0(11)0099
no
0(11)9009
no
0(11)9080
no
0(11)9090
no
x55436
no
0554x6
no
xx0099
no
0(10)909x
no
0(11)x000
no
0x9099
no
0(11)900x
no
0(11)00(12)(12)
no
0(11)0(12)0(12)
no
0(11)0(12)(12)0
no
0(11)(12)00(12)
no
0(11)(12)0(12)0
no
0(11)(12)(12)00
no
(12)(11)000(12)
no
(12)(11)00(12)0
no
(12)(11)0(12)00
no
(12)(11)(12)000
no
0x909x
no
0(11)00(12)9
no
0(11)0(12)09
no
0(11)900(12)
no
0(11)90(12)0
no
0(11)9(12)00
no
0(11)(12)009
no
(12)(11)0009
no
(12)(11)9000
no
0(11)90x0
no
0(11)00(12)x
no
0(11)0(12)0x
no
0(11)(12)00x
no
(12)(11)000x
no
0(10)x099
no
0(10)0x99
no
0(10)9x90
no
0(11)x009
no
0(11)00x9
no
0(11)908x
no
0(11)909x
no
0(10)0799
no
0(10)9x99
no
x554x6
no
0(11)0(12)(12)(12)
no
0(11)(12)0(12)(12)
no
0(11)(12)(12)0(12)
no
0(11)(12)(12)(12)0
no
(12)(11)00(12)(12)
no
(12)(11)0(12)0(12)
no
(12)(11)0(12)(12)0
no
(12)(11)(12)00(12)
no
(12)(11)(12)0(12)0
no
(12)(11)(12)(12)00
no
0xx099
no
0(11)x00x
no
0(11)90xx
no
0(10)0(12)99
no
0(10)9(12)90
no
0(10)9(12)99
no
0(10)(12)099
no
(12)(10)0099
no
0(11)x00(12)
no
0(11)x0(12)0
no
0(11)x(12)00
no
0(11)(12)0(12)x
no
0(11)(12)(12)0x
no
(12)(11)x000
no
(12)(11)00(12)x
no
(12)(11)0(12)0x
no
(12)(11)(12)00x
no
0(11)0(12)99
no
0(11)9(12)90
no
0(11)9(12)99
no
0(11)(12)099
no
(12)(11)0099
no
0(11)9x80
no
0(11)90x9
no
0(11)(12)(12)(12)(12)
no
0(11)90(12)x
no
0(11)9(12)0x
no
(12)(11)900x
no
0(11)x099
no
0(10)9x9x
no
0(11)x0(12)(12)
no
0(11)x(12)0(12)
no
0(11)x(12)(12)0
no
0(11)90x(12)
no
0(11)9(12)x0
no
0(11)(12)(12)(12)x
no
(12)(11)x00(12)
no
(12)(11)x0(12)0
no
(12)(11)x(12)00
no
(12)(11)0(12)(12)x
no
(12)(11)90x0
no
(12)(11)(12)0(12)x
no
(12)(11)(12)(12)0x
no
0(10)9(12)9x
no
0(11)x0(12)x
no
0(11)x(12)0x
no
(12)(11)x00x
no
0(11)9(12)9x
no
0(11)9x8x
no
0(11)9(12)xx
no
(12)(11)90xx
no
0(10)xx99
no
0(10)(12)x99
no
0(11)9(12)x9
no
(12)(10)x099
no
(12)(10)0x99
no
(12)(10)9x90
no
(12)(10)9x99
no
0(11)x(12)(12)(12)
no
xx0(12)99
no
xx(12)099
no
0(11)x(12)(12)x
no
(12)(11)x0(12)x
no
(12)(11)x(12)0x
no
(12)(10)9x9x
no