Drop D (D, A, D, G, B, E)
Standard (E, A, D, G, B, E)
Drop D (D, A, D, G, B, E)
Double Drop D (D, A, D, G, B, D)
Perfect 4ths (E, A, D, G, C, F)
"DADGAD" (D, A, D, G, A, D)
Open D (D, A, D, F#, A, D)
Open E (E, B, E, G#, B, E)
Everything
Chord Charts
Chords
Chart Progressions
Chart Collections
Scales
Search
Search options
Allow Open
Strict Bass Notes
All Mutes
Span
2 Frets
3 Frets
4 Frets
5 Frets
Frets
Frets 0 through 12
Frets 0 through 6
Frets 6 through 12
Frets 12 through 18
Strings
Exactly 3 strings
Exactly 4 strings
Exactly 5 strings
Exactly 6 strings
At least 4 strings
At least 5 strings
Found
207
chord chart(s) for 0(10)(12)x(10)(10) in Alternate Tuning (D, A, D, G, B, E).
Chart
Inversion
Position
Avg Pitch
Openness
Difficulty
0(10)(12)x(10)(10)
no
000033
no
000233
no
00003x
no
0000x3
no
000035
no
0000xx
no
00x033
no
000x33
no
0002x3
no
005033
no
005035
no
050035
no
00x03x
no
0x0233
no
00x233
no
0000x5
no
00503x
no
xx0233
no
00x0x3
no
000xx3
no
0050x5
no
0500x5
no
0050xx
no
0x0035
no
00x035
no
0050x3
no
00523x
no
x50035
no
0x02x3
no
00xx33
no
00x2x3
no
000085
no
xx0035
no
0550x5
no
0052xx
no
00008x
no
x500x5
no
0x00x5
no
00x0x5
no
000785
no
007085
no
005x33
no
005x3x
no
0070xx
no
00078x
no
00708x
no
0070x5
no
0000(10)(10)
no
00508x
no
00008(10)
no
x550x5
no
0x50x5
no
005xx5
no
05x0x5
no
0057xx
no
0570xx
no
00778x
no
055xx5
no
005785
no
055785
no
0057x5
no
0570x5
no
0(10)00(10)(10)
no
00578x
no
05708x
no
0000(10)x
no
0557x5
no
0xx233
no
00078(10)
no
00708(10)
no
00x08x
no
000x8x
no
0000x(10)
no
0(10)00(10)x
no
xx0085
no
007785
no
0070(10)x
no
0x708x
no
00x78x
no
007x8x
no
x55785
no
x570x5
no
00778(10)
no
0x00(10)(10)
no
00x0(10)(10)
no
xx0785
no
x5708x
no
x557x5
no
00x08(10)
no
000x8(10)
no
0(10)708x
no
057x85
no
000(12)(10)(10)
no
00(12)0(10)(10)
no
0(12)00(10)(10)
no
(12)000(10)(10)
no
057785
no
xx00(10)(10)
no
0x00(10)x
no
0x778x
no
00x0(10)x
no
057x8x
no
05778x
no
0(10)x0(10)(10)
no
0(10)0x(10)(10)
no
0(10)70xx
no
0x57x5
no
000(12)(10)x
no
00(12)0(10)x
no
0(12)00(10)x
no
(12)000(10)x
no
0(10)778x
no
00x0x(10)
no
0(10)x0(10)x
no
0(10)0x(10)x
no
000(12)xx
no
00(12)0xx
no
0(12)00xx
no
(12)000xx
no
00(12)(12)(10)(10)
no
0(10)(12)(12)(10)(10)
no
0(12)0(12)(10)(10)
no
0(12)(12)0(10)(10)
no
(12)00(12)(10)(10)
no
(12)0(12)0(10)(10)
no
(12)(12)00(10)(10)
no
x57x85
no
000(12)x(10)
no
00(12)0x(10)
no
0(10)0(12)(10)x
no
0(10)(12)0(10)x
no
0(12)00x(10)
no
(12)000x(10)
no
(12)(10)00(10)x
no
x57785
no
00(12)(12)(10)x
no
0(12)0(12)(10)x
no
0(12)(12)0(10)x
no
(12)00(12)(10)x
no
(12)0(12)0(10)x
no
(12)(12)00(10)x
no
0(10)77xx
no
x5778x
no
0xx0(10)(10)
no
00(12)(12)xx
no
0(12)0(12)xx
no
0(12)(12)0xx
no
(12)00(12)xx
no
(12)0(12)0xx
no
(12)(12)00xx
no
0(10)xx(10)(10)
no
0(12)(12)(12)xx
no
(12)(12)(12)0xx
no
(12)(12)(12)(12)xx
no
0(12)(12)(12)(10)(10)
no
(12)(12)(12)0(10)(10)
no
(12)(12)(12)(12)(10)(10)
no
0(10)x(12)(10)(10)
no
(12)0(12)(12)xx
no
(12)(12)0(12)xx
no
0x0(12)(10)(10)
no
0x(12)0(10)(10)
no
00x(12)(10)(10)
no
0(10)(12)(12)(10)x
no
0(12)x0(10)(10)
no
(12)x00(10)(10)
no
(12)0x0(10)(10)
no
0(12)(12)(12)(10)x
no
(12)(12)(12)0(10)x
no
(12)(12)(12)(12)(10)x
no
xx0(12)(10)(10)
no
xx(12)0(10)(10)
no
0x0(12)(10)x
no
0x(12)0(10)x
no
00x(12)(10)x
no
0(12)x0(10)x
no
(12)x00(10)x
no
(12)0x0(10)x
no
(12)(10)x(12)(10)(10)
no
(12)(10)(12)x(10)(10)
no
0(10)(12)x(10)x
no
(12)(10)x0(10)x
no
(12)(10)0x(10)x
no
00(12)(12)x(10)
no
0(12)(12)0x(10)
no
0(12)(12)(12)x(10)
no
(12)(12)00x(10)
no
(12)(12)(12)0x(10)
no
(12)(12)(12)(12)x(10)
no
0(10)x(12)(10)x
no
xx(12)(12)(10)(10)
no
(12)(10)xx(10)(10)
no
(12)(10)x(12)(10)x
no
(12)(10)(12)x(10)x
no
0x(12)(12)(10)(10)
no
0(12)x(12)(10)(10)
no
(12)x(12)0(10)(10)
no
(12)x(12)(12)(10)(10)
no
(12)(12)x0(10)(10)
no
(12)(12)x(12)(10)(10)
no
0x(12)(12)(10)x
no
0(12)x(12)(10)x
no
(12)x(12)0(10)x
no
(12)x(12)(12)(10)x
no
(12)(12)x0(10)x
no
(12)(12)x(12)(10)x
no